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Abstract

We introduce the Hidden Process Model (HPM), a probabilistic model for
multivariate time series data intended to model complex, poorly understood,
overlapping and linearly additive processes. HPMs are motivated by our
interest in modeling cognitive processes given brain image data. We define
HPMs, present inference and learning algorithms, study their characteristics
using synthetic data, and demonstrate their use for tracking human cognitive
processes using fMRI data.
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1 Introduction

In this paper, we propose the Hidden Process Model (HPM), a probabilistic model
for multivariate time series data generated by a system of overlapping, potentially
hidden, linearly additive processes. HPMs are motivated by the study of cognitive
processes in the brain using functional magnetic resonance imaging (fMRI) data, a
technique to indirectly capture neural activations in a subject’s brain by measuring
changes in the blood oxygenation level (also called thehemodynamic response). In
particular, HPMs are designed to learn and track both known and hidden cognitive
processes, taking into account that the hemodynamic response signatures might
overlap in the fMRI data.

HPMs build on existing machine learning methods for time series data and the
state-of-the-art approach for fMRI data analysis. With respect to the former, HPMs
have similarities to dynamic Bayesian networks (DBNs) [1]. In fact, we have found
that HPMs can be expressed in DBN format, and thus are technically a special case
of DBNs. However, to preserve the set of assumptions captured in the HPM format
requires a complex DBN. For instance, we must inflate the state-space of the DBN
by using Markov chains as binary ’memory’ variables. We are continuing work on
formalizing the connection between HPMs and DBNs, but at this point we suspect
that HPMs will provide an advantage over their DBN counterparts in terms of time
and sample complexities.

With respect to fMRI data analysis, HPMs build on a variant of the General
Linear Model (GLM) approach widely used in fMRI data analysis. In particular,
HPMs are similar to the GLM approach described in [3] to extract hemodynamic
responses out of overlapping processes. Our work differs from theirs in that HPMs
can handle processes with unknown timing, whereas GLMs do not allow uncer-
tainly about timing in the design matrix. HPMs express that uncertainty proba-
bilistically, where every instance of a general process shares the same timing dis-
tribution. Although one could attempt to handle timing uncertainly by enumerating
and solving a set of alternative GLMs, HPMs provide a more principled way to de-
scribe timing uncertainty, and a principled method for learning process models in
the face of this uncertainty.

There has been an effort to analyze fMRI data using hidden Markov models
(HMMs) [4]. Unlike that approach, HPMs are not restricted to block design fMRI
data and are capable of inferring states that are not binary.
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Figure 1: Hidden Process Models assume data is generated by a collection of pro-
cess instances that inherit properties from general process descriptions.

2 Hidden Process Models

Informally, HPMs assume the observed time series data is generated by a collection
of hidden process instances, as depicted in Figure 1. Each process instance is active
during some time interval, and influences the observed data only during this inter-
val. Process instances inherit properties from general process descriptions. The
timing of process instances depends on timing parameters of the general process it
instantiates, plus a fixed timing landmark derived from input stimuli. If multiple
processes are simultaneously active at some point in time, then their contributions
sum linearly to determine their joint influence on the observed data.

More formally, we consider the problem setting in which we are given observed
dataY and known input stimuli∆. The observed dataY is a T × V matrix
consisting ofV time series, each of lengthT . For example, these may be the time
series of fMRI activation atV different locations in the brain. The information
about input stimuli,∆, is aT × I matrix, where matrix elementδti = 1 if an input
stimulus of typei is initiated at timet, andδti = 0 otherwise. The observed dataY
is generated nondeterministically by some system in response to the input stimuli
∆. We use an HPM to model this system. Let us begin by defining processes:

Definition. A processh is a tuple〈W,Θ,Ω, d〉. d is a scalar called theduration
of h, which specifies the length of the interval during whichh is active. W is a
d × V matrix called theresponse signatureof h, which specifies the influence of
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h on the observed data at each ofd time points, in each of theV observed time
series.Θ is the collection of parameters for a multinomial distribution of a random
variable which governs the timing ofh, and which takes on values inΩ. The set of
all processes is denoted byH.

We will use the notationΩ(h) to refer to theΩ for a particular processh. More
generally, we adopt the convention thatf(x) refers to the parameterf affiliated
with entityx.

Each process represents a general procedure which may be instantiated multi-
ple times over the time series. For example, in one of our fMRI studies subjects had
to determine whether a sentence correctly described a picture, on each of 40 trials.
We hypothesize general cognitive processes such as ReadSentence, ViewPicture,
and Decide, each of which is instantiated once for each trial. The instantiation of a
process at a particular time is called aprocess instance, defined as follows:

Definition. A process instanceπ is a tuple〈h, λ,O〉, whereh is a process as de-
fined above,λ is a known scalar called atiming landmark, andO is an integer
random variable called theoffset time, which takes on values inΩ(h). The time at
which process instanceπ begins is defined to beλ + O. The multinomial distribu-
tion governingO is defined byΘ(h). The duration ofπ is given byd(h).

The timing landmarkλ is defined by a particular input in∆ (e.g., the timing
landmark for a ’ReadSentence’ process instance may be the time at which the sen-
tence stimulus is presented to the subject), whereas the values for the offset timeO
and/or the processh of the process instance may in general be unknown.

The latent variables in an HPM areh andO for each of the process instances.
We refer to each possible set of process instances as aconfiguration.

Definition. A configurationc is a set of process instances{π1 . . . πL}.

Given a configurationc = {π1 . . . πL} the probability distribution over each
observed data pointytv in the observed dataY is defined by the Normal distribu-
tion:

ytv ∼ N (µtv(c), σv) (1)

whereσv is the standard deviation characterizing the time-independent noise dis-
tribution associated with thevth time series, and where

µtv(c) =
∑
π∈c

d(h(π))∑
τ=0

δ(λ(π) + O(π) = t− τ) wh(π)
τv (2)

Hereδ(·) is an indicator function whose value is 1 if its argument is true, and 0

otherwise.wh(π)
tv is the element of the response signatureWh(π) associated with
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processh(π), for data seriesv, and for theτ th time step in the interval during
whichπ is instantiated.

Equation (2) says that the mean of the Normal distribution governing observed
data pointytv is the sum of single contributions from each process instance whose
interval of activation includes timet. In particular, theδ(·) expression is non-zero
only when the start time (λ(π)+O(π)) of process instanceπ is exactlyτ time steps
beforet, in which case we add the element of the response signatureWh(π) at the
appropriate delay (τ ) to the mean at timet. This expression captures a linear system
assumption that if multiple processes are simultaneously active, their contributions
to the data sum linearly. To some extent, this assumption holds for fMRI data [5]
and is widely used in fMRI data analysis.

We can now define Hidden Process Models:

Definition. A Hidden Process Model, HPM, is a tuple〈H,Φ, C, 〈σ1 . . . σV 〉〉, where
H is a set of processes,Φ is a vector of parameters defining the prior probabilities
over the processes inH, C is a set of candidateconfigurations, andσv is the stan-
dard deviation characterizing the noise in thevth time series ofY.

An HPM defines a probability distribution over the observed dataY, given
input stimuli∆, as follows:

P (Y|HPM,∆) =
∑
c∈C

P (Y|HPM, C = c)P (C = c|HPM,∆) (3)

whereC is the set of candidate configurations associated with theHPM, andC
is a random variable defined overC. Notice the termP (Y|HPM, C = c) is defined
by equations (1) and (2) above. The second term is

P (C = c|HPM,∆) =
∏

π∈c P (h(π)|HPM)P (O(π)|h(π), HPM,∆)∑
c′∈C

∏
π′∈c′ P (h(π′)|HPM)P (O(π′)|h(π′), HPM,∆)

(4)
whereP (h(π)|HPM) is the prior probability of processh(π) as defined by the
parameter vectorΦ of theHPM. Similarly, P (O(π)|h(π), HPM,∆) is the multi-
nomial distribution defined byΘ(h(π)).

Thus, the generative model for anHPM involves first choosing a configuration
c ∈ C, using the distribution given by equation (4), then generating values for each
time series point using the configurationc of process instances and the distribution
for P (Y|HPM, C = c) given by equations (1) and (2).
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2.1 Inference

The basic inference problem in HPMs is to infer the posterior distribution over the
candidate configurationsC of process instances, given theHPM, input stimuli∆,
and observed dataY. By Bayes theorem we have

P (C = c|Y,∆, HPM) =
P (Y|C = c, HPM)P (C = c|∆, HPM)∑

c′∈C P (Y|C = c′, HPM)P (C = c′|∆, HPM)
(5)

where the terms in this expression can be obtained using equations (1), (2), and (4).

2.2 Learning

The learning problem in HPMs is analogous to that for HMMs and DBNs: given
an observed data sequenceY, an observed stimulus sequence∆, and a set of
candidate configurations including landmarks for each process instance, we wish
to learn maximum likelihood estimates of the HPM parameters. The setΨ of
parameters to be learned includeΘ(h) andWh for each processh ∈ H, Φ, andσv

for each time seriesv.

2.2.1 Learning from fully observed data

First consider the case in which the configuration of process instances is fully
observed in advance (i.e., all process instances, including their offset times and
processes, are known). For example, in our sentence-picture brain imaging ex-
periment, if we assume there are only two cognitive processes, ReadSentence and
ViewPicture, then we can reasonably assume a ReadSentence process instance be-
gins at exactly the time when the sentence is presented to the subject, and View-
Picture begins exactly when the picture is presented.

In such fully observable settings the problem of learningΦ and theΘh re-
duces to a simple maximum likelihood estimate of multinomial parameters from
observed data. The problem of learning the response signaturesWh is more com-
plex, because theWh terms from multiple process instances jointly influence the
observed data at each time point (see equation (2)). Solving forWh reduces to
solving a multiple linear regression problem to find a least squares solution, after
which it is easy to find the maximum likelihood solution for theσv. Our multi-
ple linear regression approach in this case is based on the approach described in
[3]. One complication that arises is that the regression problem can be ill posed
if the training data does not exhibit sufficient diversity in the relative onset times
of different process instances. For example, if processes A and B always occur
simultaneously with the same onset times, then it is impossible to distinguish their
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relative contributions to the observed data. In cases where the problem involves
such singularities, we use the Moore-Penrose pseudoinverse to solve the regres-
sion problem.

2.2.2 Learning from partially observed data

In the more general case, the configuration of process instances may not be fully
observed, and we face a problem of learning from incomplete data. In this section
we consider the case where the offset times of process instances are unobserved,
however the number of process instances is known, along with the process asso-
ciated with each. For example, in the sentence-picture brain imaging experiment,
if we assume there are three cognitive processes, ReadSentence, ViewPicture, and
Decide, then while it is reasonable to assume known offset times for ReadSentence
and ViewPicture, we must treat the offset time for Decide as unobserved.

In this case, we use an EM algorithm to obtain locally maximum likelihood
estimates of the parameters, based on the followingQ function. Here we useC
to denote the collection of unobserved variables in the configuration of process
instances, and we suppress mention of∆ to simplify notation.

Q(Ψ,Ψold) = EC|Y,Ψold [P (Y, C|Ψ)]

The EM algorithm finds parametersΨ that locally maximize theQ function by
iterating the following steps until convergence:

E step: The E step involves solving for the probability distribution over the
unobserved features of configuration of process instances. The solution to this is
given by our earlier equation (5).

M step: The M step uses the distribution over the partially observed process
instances from the E step, to obtain parameter estimates that maximize the expected
log likelihood of the full (observed and unobserved) data.

The update toW is the solution to a weighted least squares problem maximiz-
ing the objective function

V∑
v=1

T∑
t=1

∑
c∈C
−P (C = c|Y,Ψold)

2σ2
v

(ytv − µtv(c))
2 (6)

whereµtv(c) is defined in terms ofW as given in equation (2).
The updates to the remaining parameters are given by

σv ←−

√√√√ 1
T

T∑
t=1

(
y2

tv − 2ytvEC|Y,Ψold [µtv(C)] + EC|Y,Ψold [µ2
tv(C)]

)
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θh,O=o ←−
∑

c∈C
∑

π∈c δ(h(π) = h)δ(O(π) = o)P (C = c|Y,Ψold)∑
c∈C

∑
π∈c δ(h(π) = h)

∑
o′∈Ω(h(π)) δ(O(π) = o′)P (C = c|Y,Ψold)

2.2.3 Model selection

In cases where the exact number of processes or the identities of the processes are
not known in advance, we can use cross-validated likelihood to choose the most
appropriate model from a set of candidate HPMs.

2.3 Tractability and prior knowledge

HPMs can be mapped into fHMMs by creating a fHMM state variable for each
HPM process, and defining the appropriate fHMM emission distribution. The ad-
vantage of HPMs is that their different timing model naturally incorporates prior
assumptions that yield large reductions in the number of latent variables to be esti-
mated. Given an HPM withL processes andM process instances and an observed
time series of lengthT , unconstrained fHMMs would require consideration of2LT

configurations of state variables, whereas HPMs consider only “LT chooseM ”
configurations. Further reductions follow when one has prior knowledge of which
process is associated with each process instance (reducing the number of configu-
rations to fewer thanTM ). Large additional reductions occur when the time series
can be partitioned into segments separated by intervals with zero process instances
(as is common in brain imaging experiments with rest periods between trials). For
example, in an experiment involvingn trials with maximum trial lengthτ and
m process instances per trial, the number of configurations considered reduces to
nτm.

3 Experimental results

To test the effectiveness of the HPM learning and inference algorithms, we applied
them to both synthetic data and to fMRI data obtained from human subjects. Ex-
periments with synthetic data allowed us to measure the effect of noise, number of
training examples and data dimensionality on the ability to accurately learn HPMs.
Experiments with fMRI data were used to elucidate the hidden cognitive processes
in human subjects, and test HPMs on problems of realistic complexity.
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Figure 2: Learned versus true process responses: synthetic data. Plots on the right
show learned response signatures (blue lines) for three processes superimposed
on the true response signatures (green lines). This HPM was learned from the
synthesized data shown on the left, in red; the green line indicates the synthesized
data before noise was added.

3.1 Experiments with synthetic data

Data was synthesized from a known HPM with three processes whose response sig-
natures are shown in Figure 2. Data was synthesized to mimic the characteristics
of the fMRI data set discussed in the following section: the data series consisted
of a sequence of trials, each trial instantiating all three processes. During learning,
the exact timing for two processes was provided, but not for the third. As shown
in the figure, the HPM learning algorithm obtains good estimates of the response
signatures despite strong overlaps in the time intervals of the processes instances
and significant noise in the data. In a variety of experiments we measured the ac-
curacy of learned HPMs by the fit of their response signatures to true response
signatures, by their data loglikelihood on held out data, and by their ability to cor-
rectly classify the process associated with each process instance on held out data.
Accuracy decreased with increasing data noise and improved with the number of
trials in the time series. We also found accuracy improved as the dimension of the
data increased, presumably because this provides more information for localizing
the timing of process instances.

3.2 Experiments with fMRI data

In this fMRI study [6], human subjects were presented a sequence of 40 trials. In
half the trials they were presented a picture for 4 sec, a blank screen for 4 sec, then
a sentence. Then they pressed a button to indicate whether the sentence correctly
described the picture. In the remaining trials the sentence was presented before the
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picture. Throughout, fMRI images of brain activity were captured every 500 msec.
We used three different HPMs to analyze this data. The first was a 2-process

HPM which assumes the fMRI data is generated by a ReadSentence process and
a ViewPicture process, each of which is instantiated immediately whenever the
corresponding sentence or picture stimulus is presented, with a duration of 11 sec-
onds. This is a typical duration for the fMRI response to neural activity (note this
means the fMRI responses to the first and second stimuli overlap). We also con-
sidered a 3-process HPM which included the same ReadSentence and ViewPicture
processes, plus a third Decide process (to model the subject’s cognitive process
of comparing the stimuli). The timing for ReadSentence and ViewPicture in this
3-process model were identical to the 2-process HPM, but the timing of the third
Decide process was unspecified, with uniform priors on start times in an inter-
val following the second stimulus. Finally we considered a model identical to the
above 2-process HPM, but with process durations of 8 sec to assure the response
signatures of processes did not overlap. We refer to this HPM model as the GNB
model, because the non-overlapping responses make it equivalent to a Gaussian
Naive Bayes classifier.

We trained each HPM and evaluated them using a leave-one-trial-out cross
validation method. We measured their data loglikelihood and their classification
accuracy when labeling each process as either ReadSentence or ViewPicture on
the held-out data. The results are given in Table 1, for five human subjects. First
note that both HPMs outperform the Gaussian Naive Bayes (GNB) model, in both
data loglikelihood and classification accuracy. We take this as a promising sign
of the superiority of HPMs over earlier classifier methods (e.g., [7]) for modeling
cognitive processes.

Second, notice the 3-process HPM outperforms the 2-process HPM. This in-
dicates that HPMs provide a viable approach to modeling truly hidden cognitive
processes (e.g., the Decide process) with unknown timing. The fact that the 3-
process model has greater cross-validated data loglikelihood means that it is able
to find useful structure in the data by incorporating the additional process.

We also applied HPMs to data from a second fMRI study in which subjects
were presented a sequence of 120 words, one every 3-4 seconds, and decided
whether the word was a noun or verb. We trained a two-process HPM, with pro-
cesses ReadNoun and ReadVerb, each with duration 15 sec. This implies there
are overlapping contributions from up to 5 distinct process instances at any given
time, making it unrealistic to apply classifiers like GNB to this data. We applied
learned HPMs to classify which process instances were ReadNoun versus Read-
Verb. Despite the greatly overlapped fMRI responses, we found cross-validated
classification accuracies significantly (p-value< 0.1) better than random classifi-
cation in 4 of 6 human subjects, with the accuracy for the best subject reaching .67

11



(random classification yields accuracy of .5). This further supports our claim that
HPMs provide an effective approach to analyzing overlapping cognitive processes.

Table 1: fMRI study: leave-one-trial-out cross validation results for GNB and HPM
on the five subjects (A through E) exhibiting the highest accuracies and data log-
likelihoods out of 13 total subjects. The accuracies are for predicting the identities
of the first and the second stimuli (up to 80 correct answers, 0.5 for purely random
classification scheme).

A B C D E
accuracy
GNB 0.725 0.750 0.725 0.637 0.750

accuracy
2-process HPM 0.750 0.875 0.700 0.675 0.787

accuracy
3-process HPM 0.775 0.875 0.738 0.637 0.812

loglikelihood
GNB -896.23541 -786.75823 -941.54912 -783.50593 -476.53631

loglikelihood
2-process HPM -876.44947 -751.3732 -912.31519 -768.7222 -466.71741

loglikelihood
3-process HPM -864.70878 -713.63435 -898.53191 -753.82864 -447.55965

4 Conclusion

We have presented HPMs to model hidden and temporally overlapping processes,
along with algorithms for inference and learning. We have shown the robustness
of HPMs with synthetic data experiments, and our results on real fMRI data show
potential for HPMs as a new way to examine cognitive processes.

Our future work will improve our model in several ways. We will extend the
model to handle parametric response forms, like the parametric hemodynamic re-
sponse in [5]. We will allow real-valued offset times. Our model currently assumes
white noise, but we plan to consider more general noise models. We will also ex-
plore approximate inference techniques to scale up HPMs. Additionally, we would
like to allow variable-duration processes, timing dependencies between process
instances, and domain-specific process parameters (e.g. whether a sentence was
affirmative or negative). Finally, we believe that HPMs solve a problem that is not
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specific to fMRI, and we are seeking additional appropriate domains.
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